2025-01-14 11:10:03|已浏览:21020次
数据分析是指用适当的方法、工具对收集来的大量数据进行统计和分析,并找出其内在规律,以求更大化地开发数据的功能,发挥数据的作用。在实际应用中,数据分析能够帮助人们做出判断,以便采取适当行动。数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。因此说,数据分析是数学与计算机科学相结合的产物。
课程阶段 | 课程模块 | 课程内容 |
前置课程 | python基础 |
python课程的目的、使用JupyterLab、python数据类型、 元组、列表、字典、python分支结构、python字符串处理+随机函数、 pthon循环结构、python面向过程函数操作、python面向对象、 python关于excel操作(xlrd库)、python关于数据库操作(mysqldb库) |
统计学基础 | 描述性统计、概率的基本概念、贝叶斯、随机变量及其分布、假设检验 | |
数据分析基础 | 数据分析核心思维、数据分析思维技巧、业务分析指标、AARRR模型 | |
数据分析师职业分析 | 数据分析师技能要求、数据分析师职业发展方向 | |
传统数据分析 | excel数据分析 |
文本清洗函数、关联匹配函数、逻辑计算函数、计算统计函数、时间序列函数、excel数据分析案例 |
excel数据可视化 |
常见图表类型、高级图表类型、图表绘制、excel绘图技巧、excel数据可视化案例、 |
|
excel数据透视表、图 |
数据透视表选项卡介绍、数据透视表分组、数据透视表计算字段、计算项、值汇总、数据透视表切片器、多表联动、数据透视图 |
|
sq|数据分析 |
mysq|数据库客户端工具、库语句、mysq|约束、mysq|数据插入、sq|文件使用、sq|函数、sq|正则表达式单表查询、单表查询、多表查询、关联查询、更改数据、 删除数据、mysq|事务、mysq|存储过程、mysq|视图、sq|数据分析案例 |
|
tableau数据可视化 | 数据字段管理、函数与公式计算、图表制作、仪表盘制作、tableau数据可视化案例 | |
python数据分析 | numpy数据处理 | numpy数据读取和存储、numpy字符串操作、numpy随机数生成、numpy统计相关函数、numpy线性代数、numpy数据处理案例 |
pandas数据分析 | index对象、series索引操作、dataframe索弓|操作、pandas索弓|操作、pandas文件读写、pandas数据分析案例、 | |
sciry数据分析 | scipy基本功能、scipy整合、scipy优化、scipy插值、scipy线性代数、scipy数据分析案例 | |
sklearn机器学习数据分析 | 什么是机器学习、sklearn回归、sklearn降维、sklearn分类、sklearn聚类、sklearn数据分析案例 | |
statsmodels统计模型数据分析 | 评估线性模型、评估时间序列处理、评估方差分析、statsmodels数据分析案例| | |
python数据可视化 | matplotlib数据可视化 | 什么是matplotlib、matplotlib设置、柱状图绘制、散点图绘制、直方图绘制、矩阵绘制、子图使用、matplotlib数据可视化案例 |
seaborn数据可视化 | 什么是seaborn、常用统计图形绘制、seaborn数据可视化案例 | |
pyecharts数据可视化 | pyecharts安装和配置、常用统计图形绘制、3D柱状图绘制、热力图绘制、网络图绘制、pyecharts数据可视化案例 |
通过海量数据挖掘和分析,形成报告,汇报给决策层。